
CS474 Natural Language Processing

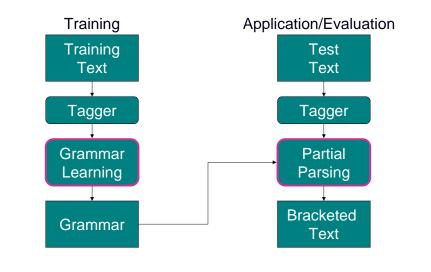
- Partial parsing / Chunking
 - What is it?
 - Error-driven pruning of Treebank grammars
 - Comparison with other methods

Partial parsing

Why partial parsing?

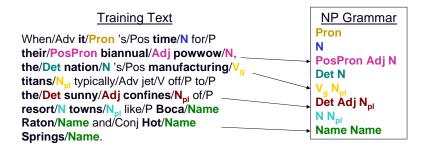
- Fast
- Supports a number of large-scale NLP tasks
 - Information Extraction
 - Phrase identification for Information Retrieval
 - Question Answering

Inductive ML algorithm


• Simple

base NP = any string having the same part-ofspeech tag sequence as a base NP from the training corpus

Combines components of existing techniques


- Charniak (1996)
- Brill (1995)
- Achieves surprisingly high accuracies

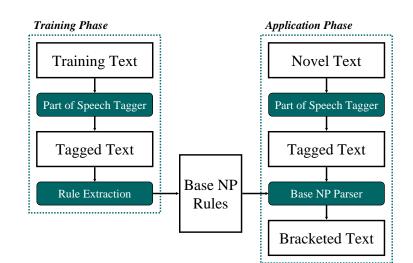
Partial parsing framework

Rule extraction

rule = sequence of part-of-speech tags

Partial parsing bracketer

• Left-to-right


Det N?

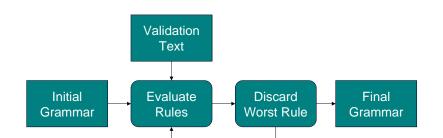
Longest-match

Not/Adv **this/Det year/N**. The/Det National/Name Association/Name of/P Manufacturers/Name settled/V_p on/P the/Det city/N of/P Indianapolis/Name for/P its/PosPron fall/N board/N meeting/N.

N?

Overview of the method

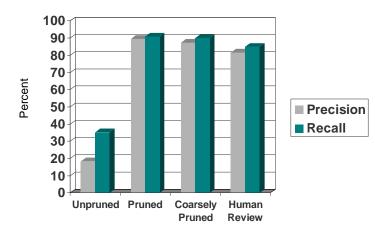
Poorly performing rules


• Sources of bad rules

- errors in training data
- errors in part-of-speech tagging
- irregular & ambiguous constructs

...manufacturing/ V_{α} titans/ N_{pl} ...

...the/Det executives/ N_{pl} began/ V_p boarding/ V_g buses/ N_{pl} ...


Grammar pruning

- score(r) = correct(r) - errors(r)

- stop when worst score is positive

Results

Results

	TBL results	Pierce & Cardie [98]	Difference
w/lexical templates	93.1P/93.5R		-3.7P/-2.6R
w/o lexical templates	90.5P/90.7R	89.4P/90.9R	-0.9P/+0.2R

TBL = transformation-based learning

 Results due to [Ramshaw & Marcus 1995, 1998]

State-of-the-Art

	+		+-		-++-		-++
	I	precision		recall	11	F	11
+	+		÷		-++-		++
[KMO1]	L	94.15%		94.29%		94.22	11
[TDD+00]	L	94.18%		93.55%		93.86	11
[TKSOO]	L	93.63%	I	92.89%		93.26	
[MPRZ99]	L	92.4%	I	93 ₀ .1%		92.8	
[XTAG99]	L	91.8%	l	93r0%	11	92.4	11
[TV99]	L	92.50%	I	92.25%		92.37	11
[RM95]	L	91.80%	I	92.27%		92.03	
[ADK99]	L	91.6%	L	91.6%	11	91.6	11
[Vee98]	L	89.0%	I	94.3%		91.6	11
[CP98]	L	90.7%	I	91.1%		90.9	
[CP99]	L	89.0%		90.9%		89.9	11
+	+		+-		-++-		-++
baseline	I	78.20%	I	81.87%	11	79.99	11
+	+		+-		-++-		-++

• ADK, CP98, CP99: no lexical information

• Baseline assigns most frequent chunk tag to each part of speech

[table from Eric Tjong Kim Sang]

Advantages of the approach

- Good performance
- Simple
 - Easy to understand, implement
 - Produces intelligible grammar rules
 - Easy to update for new text genre
- Efficient
 - Fastest bracketing procedure
- State of the art
 - ~94% P/R for NP, VP, PP chunks
 - Using ensembles of SVM's (Kudo & Matsumoto, 2000) and Winnow as employed in Zhang et al. (2001)